In a nutshell: Jacobi's method

Given a system of *n* linear equations in *n* unknowns $A\mathbf{u} = \mathbf{v}$, we will use iteration to approximate a solution to this system of linear equations. We will assume that *A* is strictly diagonally dominant, in which case, we are assured that all the diagonal entries are non-zero.

Parameters:

- ε_{step} The maximum step size allowed before we consider the method to have converged.
- *N* The maximum number of iterations.
- 1. Define A_{diag} to be the $n \times n$ matrix of the diagonal entries of A and calculate the inverse A_{diag}^{-1} of this matrix, which is that matrix with the reciprocals of each of the diagonal entries of A_{diag} .
- 2. Define A_{off} to be the $n \times n$ matrix of the off-diagonal entries of A.
- 3. Let $\mathbf{u}_0 \leftarrow A_{\text{diag}}^{-1} \mathbf{v}$ and $k \leftarrow 0$.
- 4. If k > N, we have iterated N times, so stop and return signalling a failure to converge.
- 5. Set $\mathbf{u}_{k+1} \leftarrow A_{\text{diag}}^{-1} \left(\mathbf{v} A_{\text{off}} \mathbf{u}_{k} \right)$.
- 6. If $\|\mathbf{u}_{k+1} \mathbf{u}_{k}\|_{2} < \varepsilon_{\text{step}}$, return \mathbf{u}_{k+1} .
- 7. Increment *k* and return to Step 2.

Note that if *A* is a sparse matrix (most entries are zero and stored using a sparse-matrix representation), then it is reasonable to calculate $A_{diag}^{-1}A_{off}$ first and then replace Step 5 by:

5'. Set $\mathbf{u}_{k+1} \leftarrow \mathbf{u}_0 - (A_{\text{diag}}^{-1} A_{\text{off}}) \mathbf{u}_k$.